

mailto:majun@nju.edu.cn

Overview

Static analysis

A program that takes programs as input and produces useful results (without
executing it).

Dynamic analysis
A program that monitors and alters to produce useful
results.




Computer Systems as
State Machine



Computer Systems ...

Computer system = state machine of (memory, registers) whose running is
driven by instructions.

(Because computer systems are simply circuits.)

instructioninstruction---instructions--

This model works for

= user-level programs (syscall is a special non-deterministic instruction)

= operating systems (may have external interrupts)

= concurrent/multiprocessor systems (we can choose a thread for executing an
instruction)



Dynamic Analysis

A program that monitors and alters program execution to
produce useful results.

That is, a function f(7) to produce useful results given the execution trace 7 of a
state machine (program/computer system).

Only provides useful results for the given 7

= usually complete but unsound
= complements static analyses

= SE tasks tolerate unsound and incomplete analyses
= as long as results are useful in engineering
= PL guys don’t like this



Debuggers



The GNU Project Debugger (GDB)

GDB, the GNU Project debugger, allows you to see what is going
on “inside” another program while it executes — or what
another program was doing at the moment it crashed.

= Start your program, specifying anything that might affect its behavior.

= Make your program stop on specified conditions.

= Examine what has happened when your program has stopped.

= Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.



GDB’s Ofter

Lots of commands

» Execution control 'r, ¢, f, n, s, si,...
Breakpoints ‘b, hb, wa’, ...

Program state display 'p, x, i, bt ', ...
Program state modification set, ...

Black magic - reverse debugging:

= record, rc, rn, rsi,...

Suffices for anything

= GDB captures the entire “state transition” procedure of a process



Debugger is ALL Dynamic Analyses

Any practical dynamic analysis is a “simplified” (and more
efficient) debugger.

Virtually, we can do any observation or perturbation on a
debugger

= Understanding program states

= info inferiors; thread 1; info registers; x/i $rip
= Modifying program states

= set var = value

But single-step execution incurs
= 1000X slowdown and GB/s instruction log



Implementing GDB

The fundamental problem:
[How to pause program execution at an instruction (address) or statement?

Dynamic program instrumentation
patch the instruction! (quite clever idea)

= make the code writable (thus cannot breakpoint on ROM addresses)
= mprotect()

= patch the instruction with a “debugger trap”
= int $3° ("Oxcc forx86)or ebreak” (for risc-v)
= OS will send a signal to the parent process (gdb)

= restore the instruction after hitting the breakpoint



Dynamic Analyses in SE
Research



Dynamic Analyses in SE Research

How to implement lightweight logging and for
a specific SE research task

Problem space
= What to be analyzed?

» Follow existing work?
= Practical cases?

Design space
= What to log (system design)

= How to efficiently log (hacking)
= How to analyze the logs (algorithm design)



Example (1): Record and Replay

We don’t need every memory/register snapshots on each
instruction for a deterministic replay.
= E.g., 'rr record/replay provided by rr-debugger

We only need to record non-determinism outcomes
= Non-deterministic instructions (e.g., RDRAND)

= #I/0 (or system call)

= Timing of context switch

= Shared memory < hard problem
= jyy’s PhD thesis


https://rr-project.org/

Example (2): Profiler

[ Record even less (by sampling) to see which parts took the most time.
Premature optimization is the root of all evil (D. E. Knuth)

= Use profiler (gprof, perf/systemtap, VisualVM, ...)



Example (2): Profiler

[ Record even less (by sampling) to see which parts took the most time.

Premature optimization is the root of all evil (D. E. Knuth)

= Use profiler (gprof, perf/systemtap, VisualVM, ...)

= How to implement?
= place a lot of “probes” in the code
» function call, system call, interrupt, ...
= you can implement a profiler in your OSLab!
= record time stamp and some statistics



Example (3): Program Comprehension

Invariant Mining
» Daikon reports likely invariants
» What I see is what should happen
» What I didn’t see is what shouldn’t happen

runs a program, observes the values that the program computes, and then reports properties

that were true over the observed executions.

= Example properties
= x.field >abs(y);
B y=2%x+3;
= array ais sorted;

Useful in many scenarios!
» Sequential programs, CSP, concurrent programs, distributed systems, ...

= You may find more research opportunities: contracts, etc.


https://plse.cs.washington.edu/daikon/

Example (4): Bug Detection

Online monitoring of

= AddressSanitizer (ASan)
= memory errors: use-after-free, use-after-return, stack/heap/buffer overflow,
by a shadow memory
= Valgrind provides shadow register/memory, with better soundness (we have

= ThreadSanitizer (TSan)

= detects data races and deadlocks
= Hardware-assisted AddressSanitizer(HWASAN)

= a newer variant of AddressSanitizer that consumes much less memory
= UndefinedBehaviorSanitizer (UBSan)

= checks for other problems (e.g., signed integer overflows)


https://github.com/google/sanitizers
https://valgrind.org/
https://dl.acm.org/doi/10.1145/1250734.1250746

Implementing UBSanitizer

Signed integer overflow is L

undefined behavior <2 IO e

Signed One's
o 1011 Complements 0100

1010 0101

Why?
" y 1001 o110 /+5

= to support one’s complement and weird 5 g0 Iy

_________________________________ =7 +7

machines that throw exceptions on

overflow 1 0
Y et

1110 0001
1101 0010

« How to detect them? ~A

1010 0101

Add a check on each signed integer AN oo /+5
. NP
operation -8 £7

= AST rewrite: foo(i++, j++) + 1 -
"ADD (foo(INC(i), INC(j)), 1)


https://en.wikipedia.org/wiki/Ones'_complement

Example (5): Self-Adaptive Systems

Dynamic analyses can also perturb program execution at
runtime!



Summary



Dynamic Analysis: A Simplified Debugger

(For SE tasks.)

Implementations
= Program instrumentation
= by changing AST/IR/ByteCode (using clang/LLVM pass/Soot/Javaassist/...)
= Dynamic instrumentation
= by patching instructions (gdb, PIN)
= Hardware assisted
= watch point, VM exit, PMU, PT, ...



