
Dynamic Program Analysis
majun@nju.edu.cn

Jun Ma

mailto:majun@nju.edu.cn

Overview
Static analysis
A program that takes programs as input and produces useful results (without
executing it).

Dynamic analysis
A program that monitors and alters program execution to produce useful
results.

Computer Systems as

State Machine

Computer Systems …
Computer system = state machine of (memory, registers) whose running is
driven by instructions.
(Because computer systems are simply circuits.)

instruction instruction instructionsM,R M',R' M'',R'' M''',R'''

This model works for
user-level programs (syscall is a special non-deterministic instruction)
operating systems (may have external interrupts)
concurrent/multiprocessor systems (we can choose a thread for executing an
instruction)

Dynamic Analysis
A program that monitors and alters program execution to
produce useful results.

That is, a function to produce useful results given the execution trace of a
state machine (program/computer system).

Only provides useful results for the given
usually complete but unsound

complements static analyses
SE tasks tolerate unsound and incomplete analyses

as long as results are useful in engineering
PL guys don’t like this

f(τ) τ

τ

Debuggers

The GNU Project Debugger (GDB)
GDB, the GNU Project debugger, allows you to see what is going
on “inside” another program while it executes – or what
another program was doing at the moment it crashed.

Start your program, specifying anything that might affect its behavior.
Make your program stop on speci�ed conditions.
Examine what has happened when your program has stopped.
Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.

GDB’s Offer
Lots of commands

Execution control r, c, f, n, s, si ,…
Breakpoints b, hb, wa , …
Program state display p, x, i, bt , …
Program state modi�cation set , …
Black magic - reverse debugging:

record, rc, rn, rsi , …

Suf�ces for anything
GDB captures the entire “state transition” procedure of a process

` `

` `

` `

` `

` `

Debugger is ALL Dynamic Analyses
Any practical dynamic analysis is a “simpli�ed” (and more
ef�cient) debugger.

Virtually, we can do any observation or perturbation on a
debugger

Understanding program states
info inferiors; thread 1; info registers; x/i $rip

Modifying program states
set var = value

But single-step execution incurs
1000X slowdown and GB/s instruction log �

` `

` `

Implementing GDB
The fundamental problem:
How to pause program execution at an instruction (address) or statement?

Dynamic program instrumentation
patch the instruction! (quite clever idea)

make the code writable (thus cannot breakpoint on ROM addresses)
mprotect()

patch the instruction with a “debugger trap”
int $3 (0xcc for x86) or ebreak (for risc-v)

OS will send a signal to the parent process (gdb)
restore the instruction after hitting the breakpoint

` `

` ` ` ` ` `

Dynamic Analyses in SE
Research

Dynamic Analyses in SE Research
How to implement lightweight logging and ef�cient analysis for
a speci�c SE research task�

Problem space
What to be analyzed?

Follow existing work?
Practical cases?

Design space
What to log (system design)
How to ef�ciently log (hacking)
How to analyze the logs (algorithm design)

Example (1): Record and Replay
We don’t need every memory/register snapshots on each
instruction for a deterministic replay.

E.g., rr record/replay provided by rr-debugger

We only need to record non-determinism outcomes
Non-deterministic instructions (e.g., RDRAND)
#I/O (or system call)
Timing of context switch
Shared memory ← hard problem

jyy’s PhD thesis

` `

https://rr-project.org/

Example (2): Pro�ler
Record even less (by sampling) to see which parts took the most time.

Premature optimization is the root of all evil (D. E. Knuth)

Use pro�ler (gprof, perf/systemtap, VisualVM, …)

Example (2): Pro�ler
Record even less (by sampling) to see which parts took the most time.

Premature optimization is the root of all evil (D. E. Knuth)

Use pro�ler (gprof, perf/systemtap, VisualVM, …)
How to implement?

place a lot of “probes” in the code
function call, system call, interrupt, …
you can implement a pro�ler in your OSLab!

record time stamp and some statistics

Example (3): Program Comprehension
Invariant Mining

Daikon reports likely invariants
What I see is what should happen
What I didn’t see is what shouldn’t happen

runs a program, observes the values that the program computes, and then reports properties
that were true over the observed executions.

Example properties
x.�eld > abs(y);

y = 2*x+3;

array a is sorted;

…

Useful in many scenarios!
Sequential programs, CSP, concurrent programs, distributed systems, …
You may �nd more research opportunities: contracts, etc.

https://plse.cs.washington.edu/daikon/

Example (4): Bug Detection
Online monitoring of prede�ned bug patterns

AddressSanitizer (ASan)
memory errors: use-after-free, use-after-return, stack/heap/buffer over�ow,
by a shadow memory
Valgrind provides shadow register/memory, with better soundness (we have
this paper in the reading list)

ThreadSanitizer (TSan)
detects data races and deadlocks

Hardware-assisted AddressSanitizer(HWASAN)
a newer variant of AddressSanitizer that consumes much less memory

Unde�nedBehaviorSanitizer (UBSan)
checks for other problems (e.g., signed integer over�ows)

https://github.com/google/sanitizers
https://valgrind.org/
https://dl.acm.org/doi/10.1145/1250734.1250746

Implementing UBSanitizer
Signed integer over�ow is
unde�ned behavior

Why?
to support one’s complement and weird
machines that throw exceptions on
over�ow

How to detect them?

Add a check on each signed integer
operation

AST rewrite: foo(i++, j++) + 1 →
ADD(foo(INC(i), INC(j)), 1)

` `

` `

https://en.wikipedia.org/wiki/Ones'_complement

Example (5): Self-Adaptive Systems
Dynamic analyses can also perturb program execution at
runtime!

Summary

Dynamic Analysis: A Simpli�ed Debugger

Implementations
Program instrumentation

by changing AST/IR/ByteCode (using clang/LLVM pass/Soot/Javaassist/…)
Dynamic instrumentation

by patching instructions (gdb, PIN)
Hardware assisted

watch point, VM exit, PMU, PT, …

(For SE tasks.)

