
Static Program Analysis
majun@nju.edu.cn

Jun Ma

mailto:majun@nju.edu.cn

Static Prgram Analysis:
Overview

What is Static Analysis?

Code or Binary Static Analyser Useful Results

Transformed code (assembly, instrumented code, ...)

Potential bugs (bad practices, null pointers, ...)

Software artifacts (diagrams, architecture, ...)

Examples

Compilers (and optimization passes)

Static checkers (e.g., -Wall, lint, …)

Useful results for SE practices

A program that takes programs as input and produces useful results.

Categories of Static Program Analysis

Static Analysis

Lexical Analysis Syntax Analysis Semantic Analysis

Lexical Analysis
Treating program as a sequence of Symbols/Tokens

Example: Empirical Study on Variable Naming

Are they correlated to bugs/code quality/…?

You can study this by treating code as a tokenized text stream

We are interested in the IDs

What are the style, abbreviation, … of variable names?

1 "(a + b) * 2" =>

2 [(SYM, '('), (ID, 'a'), (BIN_OP, '+'), (ID, 'b'), (SYM, ')'), (BIN_OP, '*'), (INT, '2')]

Example: Differencing Files
How to define "diffs" between two file versions?

The Edit Distance Approximation

Myers, E.W. An difference algorithm and its variations. Algorithmica 1, 251–266 (1986).
https://doi.org/10.1007/BF01840446

O(ND)

https://doi.org/10.1007/BF01840446

Is Edit Distance a Good Idea?

Minimizing edit distance is a good hack

Lacks semantic explanations to what are changed

Not work for adding indention, renaming variables, …

You can work out a paper on this!

Open Problem: How to produce even more developer-friendly diffs?

Syntax Analysis on AST

Abstract Syntax Tree (AST)
AST: A tree representation of the abstract syntactic structure of source code

(1+2)*(3+4) *

+ +

1 2 3 4

The syntax of a PL is defined by a context-free grammar
The grammar expansion forms a tree
Can also infer semantics information (e.g., variable type) on AST

Example: Clang AST Dump

Example code:

The AST:

Usage (linux):

1 $ clang -Xclang -ast-dump -fsyntax-only a.c

1 int f(int a, int b) { if (b == 0) return a; else { ... } }

1 |-FunctionDecl used f 'int (int, int)'

2 | |-ParmVarDecl used a 'int'

3 | |-ParmVarDecl used b 'int'

4 | `-CompoundStmt

5 | `-IfStmt

6 | |-BinaryOperator 'int' '=='

7 | | |-ImplicitCastExpr 'int'

8 | | | `-DeclRefExpr 'int' lvalue ParmVar 'b' 'int'

9 | | `-IntegerLiteral 'int' 0

10 | |-ReturnStmt

11 | | `-ImplicitCastExpr 'int'

12 | | `-DeclRefExpr 'int' lvalue ParmVar 'a' 'int'

13 | `-...

Example: Python AST Dump

Output:

For a pretty-printed AST, try astdump (https://pypi.org/project/astdump/)

1 import ast

2 print(ast.dump(ast.parse("(1+2)*(3+4)")))

1 Module(body=[Expr(value=BinOp(left=BinOp(left=Constant(value=1, kind=None), op=Add(), right=Constant(value=2, kind

` `

https://pypi.org/project/astdump/

Application: Lint

Unused variables

Unreachable code

Suspicious assignments (such as if (a = b))

Each line is at most 80 characters long.

Variable names (function parameters) and data members are all lowercase.

Data members of classes (but not structs) additionally have trailing underscores.

Avoid using run-time type information (RTTI).

…

Most of the rules can be checked by source-code scan or AST.

Splint

Checks trivial syntatical errors (e.g., style violations)

1 # apt install splint

2 # splint source.c

http://splint.org/
https://google.github.io/styleguide/

AST for Software Metrics

: distinct operator/operand

: occurrences of operator/operand

program length

program volume

specification abstraction level

program effort

…

We can mine correlations between software metrics and quality/maintainability/…

Halstead’s "software physics" (introduced in 1977)

n ​/n ​1 2

N ​/N1 2

N = N ​ +1 N ​2

V = N log ​(n ​ +2 1 n ​)2

L = 2n ​/(n ​ ⋅2 1 N ​)2

E = (n ​ +1 N ​ ⋅2 N ⋅ log ​(n ​ +2 1 n ​))/2n ​2 2

AST for Clone Detection
"我们不生产代码，我们只是互联网的搬运工"

Code clone is killing projects

high-vote buggy code on Stackoverflow

intellectual property (IP)

…

Typical work:

Token-based detection: "CCFinder: A multilinguistic token-based code clone detection system for large scale source

code" (TSE, 28(7), 2002)

Tree-based detection: "Scalable detection of semantic clones" (ICSE’08)

https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1145/1368088.1368132

AST for Code Transformation
Code formatting

GNU indent, bcpp, Google Java format, …

Formatting = traversal of AST (with style rules)

Transcompiler (transpiler), source-to-source compiler
ES6/ES10/JSX → ES5 (for maximized compatibility)

Earliest versions of C++ did not have a native compiler: C++ → C

Emscripten: C/C++ programs (compiled with LLVM) → JavaScript/WebAssembly.

Many other applications in software engineering research
Mutation testing, e.g., µJava

Mutation space and GenProg for program repair

this paper is also recommended!

https://www.gnu.org/software/indent/
https://invisible-island.net/bcpp/
https://github.com/google/google-java-format
https://emscripten.org/
https://cs.gmu.edu/~offutt/mujava/
https://squareslab.github.io/genprog-code/

Limitations of AST-based Analyses
Lacks good understanding of program semantics

E.g., checking that all paths return a value

Hard to do with meta-programming
1 #define FORALL(X) X(Tom) X(Jerry) X(Spike) X(Tyke)

2 #define PRINT(x) puts(#x);

3 // usage: FORALL(PRINT)

Semantics Analysis

Semantics Analysis
Tells you something about program’s execution

whether foo() is reachable

whether a pointer access is valid (not NULL, in bound, …)

Semantics analyses are useful to
compilers (and optimizations)

bug/security analysis

program verification

…

1 char dest[SIZE];

2 strncpy(dest, src, SIZE);

3 int len = strlen(dest); // insecure!

A Vision
In 2050, our compiler will reject a program if it cannot prove all
assertions in the program.

Seemingly crazy today.

Hardness of Semantics Analysis
A general program analyzer gives you infinite computational power (and thus does not exist!)

Rice’s Theorem:
All non-trivial, semantic properties of programs are undecidable.

1 def booooom(): ... # Reachable?

2

3 n = 6

4 while n := n + 2:

5 sols = [(i, n - i) for i in range(2, n / 2) \

6 if is_prime(i) and is_prime(n - i)]

7 if not sols: # replace this with halting problem

8 booooom()

9 print(f'{n} = ' + ' = '.join(f'{x} + {y}' for x, y in sols))

Semantics Analyses
Suppose that

Goldbach conjecture holds

We have infinite memory

A practical static analyzer may report:
booooom() is unreachable, print() is reachable (sound,

complete)

booooom(), print() may be reachable (sound,

incomplete)

print() is unreachable (unsound, usually problematic to

compilers)

Notice:
Sometimes the term "sound/complete" have
reverse meaning in SE papers

1 def booooom(): ... # Reachable?

2

3 n = 6

4 while n := n + 2:

5 sols = [(i, n - i) for i in range(2, n / 2) \

6 if is_prime(i) and is_prime(n - i)]

7 if not sols: # replace this with halting problem

8 booooom()

9 print(f'{n} = ' + ' = '.join(f'{x} + {y}' for x, y

Mathmatical Logics
Soundness

 implies that

Anything can be proved is true

Completeness
 implies that

Anything true can be proved

Complete

Sound

True Proved

Program Analysis
Soundness

Over-approximation:
result models all possible executions of the program

result will also model behaviors that do not actually

occur in any program execution

Precision depends on how well avoiding such spurious

results

May produce false alarms

Completeness
result may miss some possible executions of the program

No false alarms

ϕ ,ϕ ​, … ,ϕ ​ ⊢1 2 n ψ ϕ ​,ϕ ​, … ,ϕ ​ ⊨1 2 n ψ

ϕ ,ϕ ​, … ,ϕ ​ ⊨1 2 n ψ ϕ ​,ϕ ​, … ,ϕ ​ ⊢1 2 n ψ

Comments on Soundness
Any sound reachability analysis should do:

Reporting foo() unreachable → foo() is indeed unreachable
Not missing any reachable function

A trivial sound reachability analysis:
Everything may be reachable.

Useless

Comments on Soundness (cont’d)
Extremely difficult to prove a function being unreachable!

Control flow (Goldbach conjecture)

Polymorphism/Dynamic dispatching (lut[name]())

Dynamic code (eval('pri' + 'nt(1)'))

Reflection (Java)

Foreign code (C: inline assembly, Java: JNI, …)

Existing analyzers provide limited soundness

Claiming soundness in papers may mislead readers:
Non-experts may erroneously conclude that the anaysis is sound and confidently rely on the results

Experts find it is hard to interpret the analysis results (how sound, fast, precise is the analysis) without a clear

explanation about how they treat those hard language features

Soundiness
Truthiness
A "truth" that sb. believes to be true
intuitively, without any fact or evidence.

Soundiness
A soundy analysis typically means that
the analysis is mostly sound, with well-
identified unsound treatments to
hard/specific language features

Soundness, Soundiness and Unsoundness
A Sound analysis requires capturing all dynamic behaviors

A Soundy analysis aims to capture all dynamic behaviors with certain hard
language features unsoundly handled within reason

Most practical work in program analysis (PA)

An Unsound analysis deliberately ignores certain behaviors in its design for
better efficiency, precision or accessibility

Most practical work in SE

Implementing Static Analyses
Translate a program to an easier-to-handle representation

Intermediate Representation (IR) for small-step semantics
E.g. The jimple 3-address code used by Soot for JAVA

==>

http://soot-oss.github.io/soot/

Implementing Static Analyses
Translate a program to an easier-to-handle representation

Intermediate Representation (IR) for small-step semantics
E.g. The jimple 3-address code used by Soot for JAVA

Usually single static assignment (SSA) that each assignment creates a new variable

http://soot-oss.github.io/soot/

Examples
Program Slicing (ICSE’81)

Highlights "dependent" code for a given program part

Taint Analysis
See input’s "reachable" part
Useful in many security analyses

E.g., TaintDroid

https://dl.acm.org/doi/pdf/10.5555/800078.802557
https://dl.acm.org/doi/pdf/10.1145/2619091

Summary

Static Program Analysis

Code or Binary Static Analyser Useful Results

Transformed code (assembly, instrumented code, ...)

Potential bugs (bad practices, null pointers, ...)

Software artifacts (diagrams, architecture, ...)

Most SE research use existing analyses as black-box (use Clang/LLVM, Soot, …)
Don’t expect too much
Acknowledge the limitations of available tools (analysis is undecidable!)

Related courses at NJU
Software analysis (by 李樾 & 谭添)
Formal semantics of programming languages (by 梁红瑾)

